
Second Preimage Attack on SHAMATA-512

Kota Ideguchi∗ and Dai Watanabe†

Hitachi Ltd.

February 19, 2009

Abstract

We present a second preimage attack on SHAMATA-512, which is a hash function of 512-
bit output and one of the first round candidates of the SHA-3 competition. The attack uses
differential paths that hold with a probability one and a meet-in-the-middle approach to find
second preimages. The time complexity is about 2451.7 computation of the step function and
the memory complexity is about 2452.7 blocks of 128 bits.

1 Short Description of SHAMATA-512

The hash function SHAMATA[1] is a register based hash function. The internal state (chaining
value) is of 2048-bit length and stored in 16 128-bit registers; four B registers and twelve K

registers. A message is padded to a multiple of 128 bits and the message blocks are processed by
the step function sequentially. Let pad(x) = M0||M1|| · · · ||Ml−1 be a l-block padded message.
The hash value y = H(x) is computed as follows:

S0 = Initialization(IV ),

Si+1 = StepFunction(Si, Mi, i), i = 0, 1, · · · , l − 1

y = Finalization(Sl, l),

where Si is the internal state before the i-th step is applied. We call the update pro-
cess, described by Si+1 = StepFunction(Si, Mi, i), the i-th step. The StepFunction is called
UpdateRegister in the specification of the hash function.
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The StepFunction is defined as follows:

B[0]i+1 = B[2]i ⊕ P (Mi) ⊕ (i + 1),

B[2]i+1 = K[0]i ⊕ K[9]i ⊕ B[0]i ⊕ ARF
2(B[2]i ⊕ P (Mi) ⊕ (i + 1)),

K[10]i+1 = B[0]i ⊕ ARF
2(B[2]i ⊕ P (Mi) ⊕ (i + 1)),

K[2n]i+1 = K[2n + 2]i, n = 0, 2, 4, 8

B[1]i+1 = B[3]i ⊕ Q(mi) ⊕ (i + 1),

B[3]i+1 = K[1]i ⊕ K[10]i ⊕ B[1]i ⊕ ARF
2(B[3]i ⊕ Q(mi) ⊕ (i + 1)),

K[11]i+1 = B[1]i ⊕ ARF
2(B[3]i ⊕ Q(mi) ⊕ (i + 1)),

K[9]i+1 = K[11]i ⊕ Q
′(Mi),

K[7]i+1 = K[9]i,

K[5]i+1 = K[7]i ⊕ P (Mi),

K[3]i+1 = K[5]i ⊕ Q(Mi),

K[1]i+1 = K[3]i ⊕ P
′(Mi),

where B[n]i and K[n]i are values of the registers B[n] and K[n], respectively, before the i-th
step. The functions P and Q are linear functions which are defined by the multiplication of
a MDS matrix. Q′ and P ′ are also linear functions whose outputs are concatenations of the
halves of the outputs of P and Q. ARF is the AES round function without AddRoundKey.

2 Second Preimage Attack by Meet-in-the-Middle

In the section, we describe a second preimage attack for SHAMATA-512.

2.1 Notation

Let x(0) and y(0) be the target message and its hash value respectively.

y
(0) = H(x(0)). (1)

Let the padded message consist of l 128-bit message blocks, pad(x(0)) = M
(0)
0 ||M

(0)
1 || · · · ||M

(0)
l−1.

The internal state before the i-th step is denoted by S
(0)
i . The values of registers B[n] and

K[n] before the i-th step are denoted by B[n]
(0)
i and K[n]

(0)
i , respectively.

The goal of the attack is to find a message x which is not equal to x(0) and gives the same
hash value as x(0) does:

y
(0) = H(x), x 6= x

(0)
. (2)

We denote the padded message by pad(x) = M0||M1|| · · · ||Ml−1. The internal state before
the i-th step is denoted by Si. The values of registers B[n] and K[n] before the i-th step is
denoted by B[n]i and K[n]i, respectively. The differences between the values related to x(0)

and those related to x are defined as follows:

σi = Si ⊕ S
(0)
i , b[n]i = B[n]i ⊕ B[n]

(0)
i , k[n]i = K[n]i ⊕ K[n]

(0)
i , mi = Mi ⊕ M

(0)
i , (3)

2.2 Second Preimage Attack

Our attack aims to find a second preimage x such that the block length of pad(x) is the same
as that of pad(x(0)), which is l. If the internal state difference after l − 1-th step, σl, is equal
to zero for two messages with the same block length l, then the hash value difference becomes
also zero. Thus, the attack aims to find x that derives σl = 0.

The attack can be applied when l ≥ 27. We assume that this condition holds.
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Our attack uses a meet-in-the-middle approach. We divide a message into two segments:
the first λ message blocks M0|| · · · ||Mλ−1 and the last (l − λ) message blocks Mλ|| · · · ||Ml−1.
The integer λ must satisfy λ ≥ 13 and (l − λ) ≥ 14. Such a λ exists, because l ≥ 27.

A procedure of the attack is as follows.

Step 1 For candidates of the first segment M0|| · · · ||Mλ−1, build 2448 messages of λ blocks
that have the property that when each of these messages is used to update the initial
internal state difference σ0 = 0 to an internal state difference after the λ− 1-th step σλ,
the internal state difference σλ satisfies the following equations:

b[0]λ = k[0]λ = k[2]λ = k[4]λ = k[6]λ = k[8]λ = k[10]λ = 0,

b[2]λ = k[7]λ, k[5]λ = 0. (4)

A way to build such messages is described in section 2.3.

As will be explained in section 2.3, we need to compute the step function λ times to build
such a message. Thus, λ× 2448 step function evaluations are required for the step 1. We
store the built messages and the corresponding internal states after the (λ − 1)-th step
in pairs on a storage and denote this set by V1. Thus, the memory to store (λ+7)×2448

128-bit blocks is required.

Step 2 For candidates of the second (last) segment Mλ|| · · · ||Mk−1, build 2448 messages of
(l−λ) blocks that have the property that when each of these messages is used to reverse
the final internal state difference σl = 0 to an internal state difference before the λ-th
step σλ, the internal state difference σλ satisfies the equation (4).

A way to build such messages is described in section 2.4.

As will be explained in section 2.4, we need to compute the inverse of the step function
(l−λ) times to build such a message. (k−λ)×2448 step function evaluations are required
for the step 2 because the computational complexity of the inverse of the step function is
the same as that of the step function. We store the built messages and the corresponding
internal states difference before the λ-th step in pairs on a storage and denote this set
by V2. Thus, the memory to store (l − λ + 7) × 2448 128-bit blocks is required.

Step 3 Because the space of the internal state difference (4) is 896-bit volume, there exists
with a high probability a pair of messages (x1, x2), where x1 belongs to V1 and x2 belongs
to V2, that derive the same internal state difference after the (λ − 1)-th step, σλ. Then,
the concatenated message x1||x2 is a (padded) second preimage, because this message
updates the initial internal state difference σ0 = 0 to the final internal state difference
σl = 0.

An overview of the attack is depicted in figure 1.
The above attack needs (λ + (l− λ))× 2448 = l× 2448 evaluations of the step function and

memory to store (λ + 7 + l − λ + 7) × 2448 = (l + 14) × 2448 128-bit blocks. Actually, because
the step1 and step2 are commutative and the step3 can be merged with the step2 or step1, we
can easily improve the procedure and reduce the memory to (max(λ, l − λ) + 16) × 2448 block
size. When we choose λ = 13, which is always possible, the memory becomes about 2452.7

block size.
In the next two sections, we explain how to obtain the elements of V1 and V2.

2.3 Building Message Candidates for the First Segment of Mes-

sage

In the section, we show how to obtain a message of λ blocks M0|| · · · ||Mλ−1 that is used
to update the initial internal state difference σ0 to an internal state difference σλ satisfying
equation (4).
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Figure 1: Overview of attack

The step function updates an internal state difference σi as follows:

b[0]i+1 = b[2]i ⊕ P (mi), b[2]i+1 = k[0]i ⊕ k[9]i ⊕ b[0]i ⊕ ∆
X

(0)
i

(b[2]i ⊕ P (mi)), (5)

k[10]i+1 = b[0]i ⊕ ∆
X

(0)
i

(b[2]i ⊕ P (mi)), k[2n]i+1 = k[2n + 2]i, n = 0, 2, 4, 8 (6)

b[1]i+1 = b[3]i ⊕ Q(mi), b[3]i+1 = k[1]i ⊕ k[10]i ⊕ b[1]i ⊕ ∆
Y

(0)
i

(b[3]i ⊕ Q(mi)), (7)

k[11]i+1 = b[1]i ⊕ ∆
Y

(0)
i

(b[3]i ⊕ Q(mi)), k[9]i+1 = k[11]i ⊕ Q
′(mi), (8)

k[7]i+1 = k[9]i, k[5]i+1 = k[7]i ⊕ P (mi), (9)

k[3]i+1 = k[5]i ⊕ Q(mi), k[1]i+1 = k[3]i ⊕ P
′(mi), (10)

where ∆X(r), X
(0)
i , and Y

(0)
i are defined as follows,

∆X(r) = ARF
2(r) ⊕ ARF

2(X ⊕ r),

X
(0)
i = B[2]

(0)
i ⊕ P (M

(0)
i ) ⊕ (i + 1), Y

(0)
i = B[3]

(0)
i ⊕ Q(M

(0)
i ) ⊕ (i + 1).

Theorem 1. Consider any internal state difference before the i-th step σi. If nine message

block differences mi, · · · , mi+8 are set by the equations P (mj) = b[2]j for j = i, i+1, · · · , i+8,
then an internal state difference after the (i + 8)-th step σi+9 satisfies the following equations:

b[0]i+9 = k[0]i+9 = k[2]i+9 = k[4]i+9 = k[6]i+9 = k[8]i+9 = k[10]i+9 = 0,

b[2]i+9 = k[7]i+9, k[5]i+9 = 0. (11)

Proof. We prove the theorem by using the equations (5)-(10) and P (mj) = b[2]j , (j = i, · · · , i+
8).
First, by using the left equation (5) and P (mj) = b[2]j , (j = i, · · · , i + 8), the following
equations hold:

b[0]j = 0, j = i + 1, · · · , i + 9

If P (mj) = b[2]j , the input difference of ARF 2 at the j − th step becomes zero and then the
output difference of ARF 2 also becomes zero. Therefore, by using the left equation of (6), the
following equations hold:

k[10]j = 0, j = i + 2, · · · , i + 9

Then, by using the right equation of (6), the following equations hold.

k[8]j = 0, j = i + 3, · · · , i + 9

k[6]j = 0, j = i + 4, · · · , i + 9

k[4]j = 0, j = i + 5, · · · , i + 9

k[2]j = 0, j = i + 6, · · · , i + 9

k[0]j = 0. j = i + 7, · · · , i + 9

b[2]j+1 is equal to k[9]j for j = i + 7, i + 8 by using the right equation of (5) because b[0]j =
k[0]j = 0 for j = i + 7, i + 8 and the output differences of ARF 2 at the i + 7-th step and the
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i + 8-th step are zero. Then, by using the left equation of (9), the following equations hold.

k[7]j = b[2]j , j = i + 8, i + 9

Finally, we obtain the following equation by using the right equation of (9).

k[5]i+9 = k[7]i+8 ⊕ P (mi+8) = k[7]i+8 ⊕ b[2]i+8 = 0.

Then, we can obtain the desired messages by the following procedure.

step 1-1 Starting with the initial internal state difference σ0 = 0, we update the internal
state using (λ− 9) message block differences m0, m1, · · · , mλ−8 and obtain σλ−9. In this
step, we can choose freely the message block differences m0, m1, · · · , mλ−8.

step 1-2 We determine message block differences mλ−9, · · · , mλ−1 by using theorem 1 with
i = (λ− 9) and obtain the internal state difference σλ satisfying the equation (4). Then,

a message candidate is obtained by xoring M
(0)
0 || · · · ||M

(0)
λ−1 with m0|| · · · ||mλ−1.

The number of message difference m0|| · · · ||mλ−9 that we can choose at step 1-1, is greater
than 2448 because (λ − 9) ≥ 4. Therefore, we can build the 2448 message candidates.

In this procedure, λ step function evaluations is required to build a message candidate and
the corresponding internal state difference. Thus, building V1, which consists of 2448 pairs of a
message candidate and the corresponding internal state difference, requires λ×2448 evaluations
of the step function.

2.4 Building Message Candidates for the Second Segment of

Message

In the section, we show how to obtain a message of l − λ blocks Mλ|| · · · ||Ml−1 that is used
to reversely update the final internal state difference σl = 0 (after the (l − 1)-th step) to an
internal state difference σλ (before the λ-th state) satisfying the equation (4).

Solving the equations (5)-(10) for b[n]i’s and k[n]i’s, we obtain the inverse function of the
step function,

b[0]i = k[10]i+1 ⊕ ∆
X

(0)
i

(b[0]i+1), b[2]i = b[0]i+1 ⊕ P (mi),

k[0]i = b[2]i+1 ⊕ k[10]i+1 ⊕ k[7]i+1, k[n]i = k[n − 2]i+1, n = 2, 4, 6, 8, 10

b[1]i = k[11]i+1 ⊕ ∆
Y

(0)
i

(b[1]i+1), b[3]i = b[1]i+1 ⊕ Q(mi),

k[1]i = b[3]i+1 ⊕ k[11]i+1 ⊕ k[8]i+1, k[3]i = k[1]i+1 ⊕ P
′(mi),

k[5]i = k[3]i+1 ⊕ Q(mi), k[7]i = k[5]i+1 ⊕ P (mi),

k[9]i = k[7]i+1, k[11]i = k[9]i+1 ⊕ Q
′(mi). (12)

Theorem 2. Consider any internal state difference after the (i + 8)-th step σi+9. We denote

this internal state difference by

b[n]i+9 = rn, (n = 0, 1, 2, 3) k[n]i+9 = sn, (n = 0, · · · , 11) (13)

If the nine message block differences mi, · · · , mi+8 is set by the following equations (14)-(22),
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then the internal state difference before i-th step, σi, satisfies equation (11).

Q(mi+8) =s̃10 ⊕ s6 ⊕ s3 ⊕ ∆
X

(0)
i

(r̃0), (14)

Q(mi+7) =s̃8 ⊕ s4 ⊕ s1 ⊕ P
′(mi+8), (15)

Q(mi+6) =s8 ⊕ s̃6 ⊕ s2 ⊕ r3 ⊕ s11 ⊕ P
′(mi+7), (16)

Q(mi+5) =s6 ⊕ s̃4 ⊕ s0 ⊕ r1 ⊕ s9 ⊕ P
′(mi+6) ⊕ Q(mi+8) ⊕ Q

′(mi+8), (17)

Q(mi+4) =r2 ⊕ s10 ⊕ s4 ⊕ s̃2 ⊕ s̃11 ⊕ P
′(mi+5) ⊕ Q(mi+7) ⊕ Q

′(mi+7), (18)

Q(mi+3) =r0 ⊕ s8 ⊕ s2 ⊕ s̃0 ⊕ s̃9 ⊕ P (mi+8) ⊕ P
′(mi+4) ⊕ Q(mi+6) ⊕ Q

′(mi+8)

⊕ Q
′(mi+6), (19)

Q(mi+2) =r̃2 ⊕ s̃10 ⊕ s6 ⊕ s0 ⊕ s7 ⊕ ∆
Y

(0)
i+6

(s̃9 ⊕ Q
′(mi+8)) ⊕ P (mi+7) ⊕ P

′(mi+3)

⊕ Q(mi+5) ⊕ Q
′(mi+5) ⊕ Q

′(mi+7), (20)

Q(mi+1) =r2 ⊕ r̃0 ⊕ s10 ⊕ s7 ⊕ s5 ⊕ s1 ⊕ ∆
Y

(0)
i+5

(s7 ⊕ ∆
Y

(0)
i+6

(s̃9 ⊕ Q
′(mi+8)) ⊕ Q

′(mi+7))

⊕ P (mi+8) ⊕ P (mi+6) ⊕ P
′(mi+8) ⊕ P

′(mi+2) ⊕ Q(mi+4)

⊕ Q(mi+7) ⊕ Q
′(mi+4) ⊕ Q

′(mi+6), (21)

Q(mi) =r0 ⊕ r3 ⊕ s11 ⊕ s5 ⊕ s3

⊕ ∆
Y

(0)
i+4

(s5 ⊕ ∆
Y

(0)
i+5

(s7 ⊕ ∆
Y

(0)
i+6

(s̃9 ⊕ Q
′(mi+8)) ⊕ Q

′(mi+7)) ⊕ P (mi+8) ⊕ Q
′(mi+6))

⊕ P (mi+5) ⊕ P (mi+7) ⊕ P
′(mi+1) ⊕ P

′(mi+7)

⊕ Q(mi+8) ⊕ Q(mi+3) ⊕ Q(mi+6) ⊕ Q
′(mi+3) ⊕ Q

′(mi+5), (22)

where s̃n’s and r̃0 are defined as follows.

s̃10 = s10 ⊕ ∆
X

(0)
i+8

(r0), s̃8 = s8 ⊕ ∆
X

(0)
i+7

(s̃10), s̃6 = s6 ⊕ ∆
X

(0)
i+6

(s̃8),

s̃4 = s4 ⊕ ∆
X

(0)
i+5

(s̃6), s̃2 = s2 ⊕ ∆
X

(0)
i+4

(s̃4), s̃0 = s0 ⊕ ∆
X

(0)
i+3

(s̃2),

r̃2 = r2 ⊕ s10 ⊕ s7 ⊕ ∆
X

(0)
i+2

(s̃0), r̃0 = r0 ⊕ s8 ⊕ s5 ⊕ ∆
X

(0)
i+1

(r̃2),

s̃11 = s11 ⊕ ∆
Y

(0)
i+8

(r1), s̃9 = s9 ⊕ ∆
Y

(0)
i+7

(s̃11).

Before proving the theorem, we show that the equations (14)-(22) are easily solved for
mi, · · · , mi+8. First, mi+8 is determined by the equation (14). Then, mi+7 is determined by
the equation (15) because mi+8 is already determined. Like this, mi+6, mi+5, mi+4, mi+3,
mi+2, mi+1 and mi are determined by the equations (16), (17), (18), (19), (20), (21) and (22),
respectively and sequentially.
Now, we prove the theorem 2.

Proof. First, using the equation of the inverse update (12) nine times, we can express the
internal state difference before the λ+1-th step, σi, by σi+9 and mi, · · · , m8. Especially, b[0]i,
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k[10]i, k[8]i, k[6]i, k[4]i, k[2]i, k[0]i, b[2]i, k[7]i and k[5]i is expressed as the follows:

b[0]i =s̃10 ⊕ s6 ⊕ s3 ⊕ ∆
X

(0)
i

(r̃0) ⊕ Q(mi+8), (23)

k[10]i =s̃8 ⊕ s4 ⊕ s1 ⊕ P
′(mi+8) ⊕ Q(mi+7), (24)

k[8]i =s8 ⊕ s̃6 ⊕ s2 ⊕ r3 ⊕ s11 ⊕ P
′(mi+7) ⊕ Q(mi+6), (25)

k[6]i =s6 ⊕ s̃4 ⊕ s0 ⊕ r1 ⊕ s9 ⊕ P
′(mi+6) ⊕ Q(mi+8) ⊕ Q

′(mi+8) ⊕ Q(mi+5), (26)

k[4]i =r2 ⊕ s10 ⊕ s4 ⊕ s̃2 ⊕ s̃11 ⊕ P
′(mi+5) ⊕ Q(mi+7) ⊕ Q

′(mi+7) ⊕ Q(mi+4), (27)

k[2]i =r0 ⊕ s8 ⊕ s2 ⊕ s̃0 ⊕ s̃9 ⊕ P (mi+8) ⊕ P
′(mi+4) ⊕ Q(mi+6) ⊕ Q

′(mi+8) ⊕ Q
′(mi+6) ⊕ Q(mi+3),

(28)

k[0]i =r̃2 ⊕ s̃10 ⊕ s6 ⊕ s0 ⊕ s7 ⊕ ∆
Y

(0)
i+6

(s̃9 ⊕ Q
′(mi+8)) ⊕ P (mi+7) ⊕ P

′(mi+3)

⊕ Q(mi+5) ⊕ Q
′(mi+5) ⊕ Q

′(mi+7) ⊕ Q(mi+2), (29)

b[2]i =r̃0 ⊕ P (mi), (30)

k[7]i =r2 ⊕ s10 ⊕ s7 ⊕ s5 ⊕ s1 ⊕ ∆
Y

(0)
i+5

(s7 ⊕ ∆
Y

(0)
i+6

(s̃9 ⊕ Q
′(mi+8)) ⊕ Q

′(mi+7)) ⊕ P (mi+8)

⊕ P (mi) ⊕ P (mi+6) ⊕ P
′(mi+8) ⊕ P

′(mi+2) ⊕ Q(mi+4)

⊕ Q(mi+7) ⊕ Q
′(mi+4) ⊕ Q

′(mi+6) ⊕ Q(mi+1), (31)

k[5]i =r0 ⊕ r3 ⊕ s11 ⊕ s5 ⊕ s3

⊕ ∆
Y

(0)
i+4

(s5 ⊕ ∆
Y

(0)
i+5

(s7 ⊕ ∆
Y

(0)
i+6

(s̃9 ⊕ Q
′(mi+8)) ⊕ Q

′(mi+7)) ⊕ P (mi+8) ⊕ Q
′(mi+6))

⊕ P (mi+5) ⊕ P (mi+7) ⊕ P
′(mi+1) ⊕ P

′(mi+7)

⊕ Q(mi+8) ⊕ Q(mi+3) ⊕ Q(mi+6) ⊕ Q
′(mi+3) ⊕ Q

′(mi+5) ⊕ Q(mi). (32)

From the equations (14) and (23), the equation b[0]i = 0 follows. Similarly, k[10]i = 0 is
derived from the equations (15) and (24), k[8]i = 0 from the equations (16) and (25), k[6]i = 0
from the equations (17) and (26), k[4]i = 0 from the equations (18) and (27), k[2]i = 0 from
the equations (19) and (28), k[0]i = 0 from the equations (20) and (29), b[2]i = k[7]i from the
equations (21), (30) and (31), and k[5]i = 0 from the equations (22) and (32).

Then, we can obtain the desired messages by the following procedure.

step 2-1 Starting with the final internal state difference σl = 0, we update reversely the in-
ternal state using (l−λ−9) message block differences ml−1, ml−2, · · · , mλ+9 and obtain
σλ+9. In this step, we can choose freely the message block differences mλ+9, mλ+10, · · · , ml−1,
except for the padding segment of ml−1.

step 2-2 We determine message block differences mλ+8, · · ·mλ by using theorem 2 with i = λ

and obtain the internal state difference σλ satisfying equation (4). Then, a message

candidate is obtained by xoring M
(0)
λ || · · · ||M

(0)
l−1 with mλ|| · · · ||ml−1.

The number of message difference mλ+9|| · · · ||ml−1 that we can choose at step 2-1, is greater
than 2448 because (l − λ − 9) ≥ 5. Therefore, we can build 2448 message candidates.

In this procedure, (l − λ) inverse step function evaluations is required to build a message
candidate and the corresponding internal state difference. An evaluation of the inverse step
function takes the same time as the step function does. Thus, building V2, which consists
of 2448 pairs of a message difference and the corresponding internal state difference, requires
(l − λ) × 2448 evaluations of the step function.

3 Conclusion

In this note, We presented a second preimage attack on SHAMATA-512. The attack uses
differential paths that hold with a probability one and a meet-in-the-middle approach to find
second preimages. The time complexity is about 2451.7 computation of the step function and
the memory complexity is about 2452.7 blocks of 128 bits.
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